Rabu, 11 April 2012

CACHE MEMORI



      Cache Memori

      1. Prinsip-prinsip
Cache memori diujukan untuk memberikan kecepatan memori yang mendekati kecepatan memori tercepat yang bisa diperoleh, sekaligus memberikan ukuran memori yang besar dengan harga yang lebih murah dari jenis-jenis memori semikonduktor. Konsepnya adalah sebagai berikut :
Terdapat memori utama yang relatif lebih besar dan lebih lambat dan cache memory yang berukuran lebih kecil dan lebih cepat. Cache berisi salinan sebagian memori utama. Pada saat CPU membaca sebuah word memory, maka dilakukan pemeriksaan untuk mengetahui apakah word itu terdapat pada cache. Bila sudah ada, maka word akan dikirimkan ke CPU. Sedangkan bila tidak ada, blok memori utama yang terdiri dari sejumlah word yang tetap akan dibaca ke dalam cache dan kemudian akan dikirimkan ke CPU.

      1. Elemen-elemen Rancangan Cache
Walaupun terdapat banyak implementasi cache, hanya terdapat sedikit elemen-elemen dasar rancangan yang dapat mengklasifikasikan dan membedakan arsitektur cache. Adapun elemen yang akan dibahas pada subbab ini adalah elemen pertama yaitu ukuran cache. Semakin besar cache maka semakin besar jumlah gate yang terdapat pada pengalamatan cache. Akibatnya adalah cache yang berukuran besar cenderung untuk lebih lambat dibanding dengan cache berukuran kecil (walaupun dibuat dengan teknologi rangkaian terintegrasi yang sam adan pitaruh pada tempat pada keping dan board yang sama. Kinerja cache juga sangat sensitif terhadap sifat beban kerja, maka tidaklah mungkin untuk mencapai ukuran cache yang ‘optimum’.

      1. Fungsi Pemetaan (Mapping)
Karena saluran cache lebih sedikit dibandingkan dengan blok memori utama, diperlukan algoritma untuk pemetaan blok-blok memori utama ke dalam saluran cache. Selain itu diperlukan alat untuk menentukan blok memori utama mana yang sedang memakai saluran cache. Pemilihan fungsi pemetaan akan menentukan bentuk organisasi cache. Dapat digunakan tiga jenis teknik, yaitu sebagai berikut :
a. Pemetaan Langsung (Direct Mapping)
Pemetaan ini memetakan masing-masing blok memori utama hanya ke satu saluran cache saja. Jika suatu block ada di cache, maka tempatnya sudah tertentu. Keuntungan dari direct mapping adalah sederhana dan murah. Sedangkan kerugian dari direct mapping adalah suatu blok memiliki lokasi yang tetap (Jika program mengakses 2 block yang di map ke line yang sama secara berulang-ulang, maka cache-miss sangat tinggi).
      1. Pemetaan Asosiatif (Associative Mapping)
Pemetaan ini mengatasi kekurangan pemetaan langsung dengan cara mengizinkan setiap blok memori utama untuk dimuatkan ke sembarang saluran cache. Dengan pemetaan asosiatif, terdapat fleksibilitas penggantian blok ketika blok baru dibaca ke dalam cache. Kekurangan pemetaan asosiatif yang utama adalah kompleksitas rangkaian yang diperlukan untuk menguji tag seluruh saluran cache secara paralel, sehingga pencarian data di cache menjadi lama
      1. Pemetaan Asosiatif Set (Set Associative Mapping)
Pada pemetaan ini, cache dibagi dalam sejumlah sets. Setiap set berisi sejumlah line. Pemetaan asosiatif set memanfaatkan kelebihan-kelebihan pendekatan pemetaan langsung dan pemetaan asosiatif
      1. Jumlah Cache
a. Cache Satu Tingkat VS Cache Dua Tingkat
Dengan meningkatkan kepadatan logik, telah memungkinkan menempatkan cahce pada keping yang sama seperti processor: the on-chip cache. Dibandingkan dengan suatu cache yang dapat dijangkau via bus eksternal, on-chip cache mengurangi aktivitas bus eksternal processor dan akibatnya meningkatkan waktu eksekusi dan meningkatkan kinerja sistem secara keseluruhan.
Memori yang bernama L1 Cache ini adalah memori yang terletak paling dekat dengan prosesor (lebih spesifik lagi: dekat dengan blok CU [Control Unit]). Penempatan Cache di prosesor dikembangkan sejak PC i486. Memori di tingkat ini memiliki kapasitas yang paling kecil (hanya 16KB), tetapi memiliki kecepatan akses dalam hitungan nanodetik (sepermilyar detik). Data yang berada di memori ini adalah data yang paling penting dan paling sering diakses. Biasanya data di sini adalah data yang telah diatur melalui OS (Operating System) menjadi Prioritas Tertinggi (High Priority).
Memori L2 Cache ini terletak terletak di MotherBoard (lebih spesifik lagi: modul COAST : Cache On A STick. Bentuk khusus dari L2 yang mirip seperti Memory Module yang dapat diganti-ganti tergantung motherboardnya). Akan tetapi ada juga yang terintegrasi langsung dengan MotherBoard, atau juga ada yang terintergrasi dengan Processor Module. Di L2 Cache ini, kapasitasnya lebih besar dari pada L1 Cache. Ukurannya berkisar antara 256KB—2MB. Biasanya, L2 Cache yang besar diperlukan di MotherBoard untuk Server. Kecepatan akses sekitar 10ns.
      1. Organisasi Cache Pentium
Foreground reading Find out detail of Pentium II cache systems
NOT just from Stallings!

      1. Organisasi Cache Power PC
Organisasi
    1. Organisasi DRAM Tingkat Lanjut
      1. Enhanced DRAM
EDRAM (Enhanched DRAM) merupakan model DRAM yang paling simple, dan memiliki SRAM cache yang terintegrasi di dalamnya. Dalam model EDRAM 4 bit, SRAM cache-nya akan menyimpan seluruh isi dari baris terakhir yang dibaca, dimana terdiri dari 2048 bit, atau 512 4-bit potongan. Sebuah komparator menyimpan 11-bit nilai dari alamat baris yang sering diakses. Jika akses selanjutnya pada baris yang sama, maka hanya butuh akses terhadap SRAM cache yang cepat.

      1. Cache DRAM
Cache DRAM (CDRAM), yang dibuat oleh Mitsubishi [HIDA90], sama dengan EDRAM. CDRAM mencakup cache SRAM cache SRAM yang lebih besar dari EDRAM (16 vs 2 kb).
SRAM pada CDRAM dapat digunakan dengan dua cara. Pertama, dapat digunakan sebagai true cache, yang terdiri dari sejumlah saluran 64-bit. Hal ini sebaliknya dengan EDRAM, di mana cache SRAM hanya berisi sebuah blok, yaitu the most recently accessed row. Mode cache CDRAM cukup efektif untuk access random ke memori.


      1. Synchronous DRAM (SDRAM)
Tidak seperti DRAM biasa, yang bersifat asinkron, SDRAM saling bertukar data dengan processor yang disinkronkan dengan signal pewaktu eksternal dan bekerja dengan kecepatan penuh bus processor/memori tanpa mengenal keadaan wait dan menunggu state.
Dengan menggunakan mode akses synchronous, pergerakan data masuk dan keluar DRAM akan dikontrol oleh clock system. Processor akan meminta informasi instruksi dan alamat, yang diatur oleh DRAM. DRAM akan merespon setelah clock cycle tertentu. Dengan demikian, processor dapat dengan aman melakukan tugas lain sementara SDRAM memproses request
Pada SDRAM juga dikenal istilah SDR (Single Date Rate) dan DDR (Double Date Rate). SDR SDRAM dapat diartikan sebagai DRAM yang memiliki kemampuan transfer data secara single line (satu jalur saja). Sementara DDR SDRAM memiliki kemampuan untuk melakukan transfer data secara double line.
      1. Rambus DRAM
RDRAM merupakan memori yang melakukan pendekatan lebih kepada masalah bandwidth. Rambus DRAM dikembangkan oleh RAMBUS, Inc., Pengembangan ini menjadi polemik karena Intel© berusaha memperkenalkan PC133MHz. RDRAM memiliki chip yang terpasang secara vertikal, dimana semua pin berada pada satu sisi. Chips akan melakukan pertukaran data dengan processor melalui 28 jalur (kabel) yang tidak lebih pangajng dari 12 cm. Busnya dapat menampung alamat lebih dari 320 RDRAM chip dan dengan rata-rata kecepatan sekitar 500Mbps. Oleh karena itulah, RDRAM memiliki kecepatan yang jauh lebih besar dibanding tipe DRAM lainnya.
      1. RamLink
Ramlink merupakan inovasi radikal pada DRAM tradisional. RamLink berkonsentrasi pada interface processor/memori dibandingkan pada arsitektur internal keping DRAM. RamLink adalah memory interface yang memiliki koneksi point-to-point yang disusun dalam bentuk cincin. Lalu lintas pada cincin diatur oleh pengontrol memori yang mengirimkan pesan ke keping-keping DRAM, yang berfungsi sebagai simul-simpul pada jaringan cincin. Data saling dipertukarkan dalam bentuk paket.




  1. Konsep dasar memori eksternal
    Menyimpan data bersifat tetap (non volatile), baik pada saat komputer aktif atau tidak. Memori eksternal biasa disebut juga memori eksternal yaitu perangkat keras untuk melakukan operasi penulisan, pembacaan dan penyimpanan data, di luar memori utama.
    Memori eksternal mempunyai dua tujuan utama yaitu sebagai penyimpan permanen untuk membantu fungsi RAM dan yang untuk mendapatkan memori murah yang berkapasitas tinggi bagi penggunaan jangka panjang.
BERBAGAI JENIS MEMORY EKSTERNAL
1. Berdasarkan Jenis Akses Data
Berdasarkan jenis aksesnya memori eksternal dikelompokkan menjadi dua jenis yaitu :
a. DASD (Direct Access Storage Device) di mana ia mempunyai akses langsung terhadap data.
Contoh :
1. Magnetik (floppy disk, hard disk).
2. Removeable hard disk (Zip disk, Flash disk).
3. Optical Disk.
b. SASD (Sequential Access Storage Device) : Akses data secara tidak langsung (berurutan), seperti pita magnetik.
2. Berdasarkan Karakteristik Bahan
Berdasarkan karakteristik bahan pembuatannya, memori eksternal digolongkan menjadi beberapa kelompok sebagai berikut:
a. Punched Card atau kartu berlubang
Merupakan kartu kecil berisi lubang-lubang yang menggambarkan berbagai instruksi atau data. Kartu ini dibaca melalui puch card reader yang sudah tidak digunakan lagi sejak tahun 1979.
b. Magnetic Disk
Magnetic Disk merupakan disk yang terbuat dari bahan yang bersifat magnetik, Contoh : floppy dan harddisk.
c. Optical Disk
Optical disk terbuat dari bahan-bahan optik, seperti dari resin (polycarbonate) dan dilapisi permukaan yang sangat reflektif seperti alumunium. Contoh : CD dan DVD
d. Magnetic Tape
Sedangkan magnetik tape, terbuat dari bahan yang bersifat magnetik tetapi berbentuk pita, seperti halnya pita kaset tape recorder.
MEMORI EKSTERNAL
Merupakan memori tambahan yang berfungsi untuk menyimpan data atau program.
Contoh: Hardisk, Floppy Disk dllHubungan antara Chace Memori, Memori Utama dan Memori eksternal dapat di lihat pada gambar berikut :
Konsep dasar memori eksternal adalah penyimpan data bersifat tetap (non volatile), baik pada saat komputer aktif atau tidak.Memori eksternal biasa disebut juga memori eksternal yaitu perangkat keras untuk melakukan operasi penulisan, pembacaan dan penyimpanan data, di luar memori utama. Memori eksternal mempunyai dua tujuan utama yaitu sebagai penyimpan permanen untuk membantu fungsi RAM dan yang untuk mendapatkan memori murah yang berkapasitas tinggi bagi penggunaan jangka panjang.


Magnetik Disk
Disk adalah piringan bundar yang terbuat dari bahan tertentu (logam atau plastik) dengan permukaan dilapisi bahan yang dapat di magnetisasi. Mekanisme baca/tulis menggunakan kepala baca atau tulis yang disebut head, merupakan komparan pengkonduksi (conducting coil). Desain fisiknya, head bersifat stasioner sedangkan piringan disk berputar sesuai kontrolnya. Layout data pada disk diperlihatkan pada gambar 1.1 dan gambar 1.2. Terdapat dua metode layout data pada disk, yaitu constant angular velocity dan multiple zoned recording. Disk diorganisasi dalam bentuk cincin – cincin konsentris yang disebut track. Tiap track pada disk dipisahkan oleh gap. Fungsi gap untuk mencegah atau mengurangi kesalahan pembacaan maupun penulisan yang disebabkan melesetnya head atau karena interferensi medan magnet. Sejumlah bit yang sama akan menempati track – track yang tersedia. Semakin ke dalam disk maka kerapatan (density) disk akan bertambah besar. Data dikirim ke memori ini dalam bentuk blok, umumnya blok lebih kecil kapasitasnya daripada track. Blok – blok data disimpan dalam disk yang berukuran blok, yang disebut sector. Sehingga track biasanya terisi beberapa sector, umumnya 10 hingga 100 sector tiap tracknya. Bagaimana mekanisme membacaan maupun penulisan pada disk ? Head harus bisa mengidentifikasi titik awal atau posisi – posisi sector maupun track. Caranya data yang disimpan akan diberi header data tambahan yang menginformasikan letak sector dan track suatu data. Tambahan header data ini hanya digunakan oleh sistem disk drive saja tanpa bisa diakses oleh pengguna.
Header data yang digunakan disk drive menemukan letak sector dan tracknya. Byte SYNCH adalah pola bit yang menandakan awal field data.
Karakteristik Magnetik Disk
Saat ini sesuai kekhususan penggunaan telah beredar berbagai macam magnetik disk. Tabel 1.1 menyajikan daftar katakteristik utama dari berbagai jenis disk.
Berdasarkan gerakan head, terdapat dua macam jenis yaitu head tetap (fixed head) dan head bergerak (movable head) seperti terlihat pada gambar 1.4. Pada head tetap setiap track memiliki kepala head sendiri, sedangkan pada head bergerak, satu kepala head digunakan untuk beberapa track dalam satu muka disk. Mekanisme dalam head bergerak adalah lengan head bergerak menuju track yang diinginkan berdasarkan perintah dari disk drive-nya.
Gambar 1.4 Macam disk berdasar gerakan head
Karakteristik disk berdasar portabilitasnya dibagi menjadi disk yang tetap (nonremovable disk) dan disk yang dapat dipindah (removable disk). Keuntungan disk yang dapat dipindah atau diganti – ganti adalah tidak terbatas dengan kapasitas disk dan lebih fleksibel. Karakteristik lainnya berdasar sides atau muka sisinya adalah satu sisi disk (single sides) dan dua muka disk (double sides). Kemudian berdasarkan jumlah piringannya (platters), dibagi menjadi satu piringan (single platter) dan banyak piringan (multiple platter). Gambar disk dengan multiple platter.
Terakhir, mekanisme head membagi disk menjadi tiga macam, yaitu head yang menyentuh disk (contact) seperti pada floppy disk, head yang mempunyai celah utara tetap maupun yang tidak tetap tergantung medan magnetnya. Celah atau jarak head dengan disk tergantung kepadatan datanya, semakin padat datanya dibutuhkan jarak head yang semakin dekat, namun semakin dekat head maka faktor resikonya semakin besar, yaitu terjadinya kesalahan baca. Teknologi Winchester dari IBM mengantisipasi masalah celah head diatas dengan model head aerodinamik. Head berbentuk lembaran timah yang berada dipermukaan disk apabila tidak bergerak, seiring perputaran disk maka disk akan mengangkat headnya. Istilah Winchester dikenalkan IBM pada model disk 3340-nya. Model ini merupakan removable disk pack dengan head yang dibungkus di dalam pack. Sekarang istilah Winchester digunakan oleh sembarang disk drive yang dibungkus pack dan memakai rancangan head aerodinamis.
Gambar 1.5 Disk piringan banyak (multiple platters disk)
Disk drive beroperasi dengan kecepatan konstan. Untuk dapat membaca dan menulis head harus berada pada track yang diinginkan dan pada awal sectornya. Diperlukan waktu untuk mencapai track yang diinginkan, waktu yang diperlukan disebut aebagai seek time. Apabila track sudah didapatkan maka diperlukan waktu sampai sector yang bersangkutan berputar sesuai dengan headnya, yang disebut rotational latency. Jumlah seek time dan rotational latency disebut dengan access time. Dengan kata lain, access time adalah waktu yang diperlukan disk untuk berada pada posisi siap membaca atau menulis.


FLOPPY DISK
Dengan berkembangnya komputer pribadi maka diperlukan media untuk mendistribusikan software maupun pertukaran data. Solusinya ditemukannya disket atau floppy disk oleh IBM. Karakteristik disket adalah head menyentuh permukaan disk saat membaca ataupun menulis. Hal ini menyebabkan disket tidak tahan lama dan sering rusak. Untuk mengurangi kerusakan atau aus pada disket, dibuat mekanisme penarikan head dan menghentikan rotasi disk ketika head tidak melakukan operasi baca dan tulis. Namun akibatnya waktu akses disket cukup lama. Gambar 1.6. memperlihatkan bentuk floppy disk.
Gambar 1.6 Floppy disk
Floppy disk drive yang menjadi standar pemakaian terdiri dari 2 ukuran yaitu 5.25” dan 3.5” yang masing-masing memiliki 2 tipe kapasitas Double Density (DD) dan High Density (HD). Floppy disk 5.25” kapasitasnya adalah 360 Kbytes (untuk DD) dan 1.2 Mbytes (untuk HD). Sedangkan floppy disk 3.5” kapasitasnya 720 Kbytes (untuk DD) dan untuk HD). Kapasitas yang dapat ditampung oleh floppy disk memang cenderung kecil, apalagi jika dibandingkan dengan kebutuhan transfer dan penyimpanan data yang makin lama makin besar. Floppy disk hanya dapat menyimpan file teks, karena keterbatasan kapasitas. Walaupun demikian, penulisan pada floppy disk dapat dilakukan berulang-ulang, walaupun memakan waktu yang relatif lama. Keterbatasan yang disebut dengan Iomega Zip Drive. Perangkat ini terdiri dari floppy drive dan cartridge floppy khusus, yang mampu menampung samapai hampir 100MB data. Jumlah ini jelas memungkinkan untuk menampung file multimedia dan grafik (biasanya berukuran mega bytes), yang sebelumnya tidak dimungkinkan untuk disimpan dalam floppy disk.
HARDDISK
Harddisk adalah sebuah komponen perangkat keras yang menyimpan data sekunder dan berisi piringan magnetis. Harddisk diciptakan pertama kali oleh insinyur IBM, Reynold Johnson di tahun 1952. Harddisk pertama tersebut terdiri dari 50 piringan berukuran 2 kaki (0,6 meter) dengan kecepatan rotasinya mencapai 1.200 rpm (rotation per minute) dengan kapasitas penyimpanan 5 MB. Harddisk zaman sekarang sudah ada yang hanya selebar 0,6 cm dengan kapasitas 750 GB. Jika dibuka, terlihat mata cakram keras pada ujung lengan bertuas yang menempel pada piringan yang dapat berputar.
Rangkaian penguat, DSP (digital signal precessor), chip memory, konektor, spindle, dan actuator arm motor controller. arus membongkar CP sampai dengan Gbytes. Ukuran kapasitas yang sangat besar ini sangat menguntungkan dalam hal penyimpanan data. Seperti halnya floppy disk dan Iomega Zip drive, harddisk juga dapat menangani penulisan berulang kali dengan kecepatan yang relatif jauh lebih cepat dibandingkan dengan floppy disk. Tapi sayangnya, terdapat kendala dalam segi mobilitas, karena untuk memindah-mindahkan harddisk berarti h(harddisk tersimpan di dalam CPU). Ternyata, kendala ini telah dapat diatasi dengan adanya konsep Removable Harddisk. Hardsik dibentuk berupa cartridge, yang dipasang pada removable rack yang terambung pada power supplay dan kabel data IDE Interface-nya. Data yang disimpan dalam harddisk tidak akan hilang ketika tidak diberi tegangan listrik. Dalam sebuah harddisk, biasanya terdapat lebih dari satu piringan untuk memperbesar kapasitas data yang dapat ditampung. Dalam perkembangannya kini harddisk secara fisik menjadi semakin tipis dan kecil namun memiliki daya tampung data yang sangat besar. Harddisk kini juga tidak hanya dapat terpasang di dalam perangkat (internal) tetapi juga dapat dipasang di luar perangkat (eksternal) dengan menggunakan kabel USB.


IDE Disk (Harddisk)
Saat IBM menggembangkan PC XT, menggunakan sebuah hardisk Seagate 10 MB untuknmenyimpan program maupun data. Harddisk ini memiliki 4 head, 306 silinder dan 17 sektor per track, dicontrol oleh pengontrol disk Xebec pada sebuah kartu plug-in. Teknologi yang berkembang pesat menjadikan pengontrol disk yang sebelumnya terpisah menjadi satu paket terintegrasi, diawali dengan teknologi drive IDE (Integrated Drive Electronics) pada tengah tahun 1980. Teknologi saat itu IDE hanya mampu menangani disk berkapasitas maksimal 528 MB dan mengontrol 2 disk. Seiring kebutuhan memori, berkembang teknologi yang mampu menangani disk berkapasitas besar. IDE berkembang menjadi EIDE (Extended Integrated Drive Electronics) yang mampu menangani harddisk lebih dari 528 MB dan mendukung pengalamatan LBA (Logical Block Addressing), yaitu metode pangalamatan yang hanya memberi nomer pada sektor – sektor mulai dari 0 hingga maksimal 224-1. Metode ini mengharuskan pengontrol mampu mengkonversi alamat – alamat LBA menjadi alamat head, sektor dan silinder. Peningkatan kinerja lainnya adalah kecepatan tranfer yang lebih tinggi, mampu mengontrol 4 disk, mampu mengontrol drive CD-ROM.


SCSI Disk (Harddisk)
Disk SCSI (Small Computer System Interface) mirip dengan IDE dalam hal organisasi pengalamatannya. Perbedaannya pada piranti antarmukanya yang mampu mentransfer data dalam kecepatan tinggi. Versi disk SCSI terlihat pada tabel 5.3. Karena kecepatan transfernya tinggi, disk ini merupakan standar bagi komputer UNIX dari Sun Microsystem, HP, SGI, Machintos, Intel terutama komputer – komputer server jaringan, dan vendor – vendor lainnya. SCSI sebenarnya lebih dari sekedar piranti antarmuka harddisk. SCSI adalah sebuah bus karena SCSI mampu sebagai pengontrol hingga 7 peralatan seperti: harddisk, CD ROM, rekorder CD, scanner dan peralatan lainnya. Masing-masing peralatan memiliki ID unik sebagai media pengenalan oleh SCSI.
RAID
Telah dijelaskan diawal bahwa masalah utama sistem memori adalah mengimbangi laju kecepatan CPU. Beberapa teknologi dicoba dan dikembangkan, diantaranya menggunakan konsep akses paralel pada disk. RAID (Redundancy Array of Independent Disk) merupakan organisasi disk memori yang mampu menangani beberapa disk dengan sistem akses paralel dan redudansi ditambahkan untuk meningkatkan reliabilitas. Karena kerja paralel inilah dihasilkan resultan kecepatan disk yang lebih cepat. Teknologi database sangatlah penting dalam model disk ini karena pengontrol disk harus mendistribusikan data pada sejumlah disk dan juga membacaan kembali. Karakteristik umum disk RAID :
RAID adalah sekumpulan disk drive yang dianggap sebagai sistem tunggal disk.
Data didistribusikan ke drive fisik array.
Kapasitas redudant disk digunakan untuk menyimpan informasi paritas, yang menjamin recoveribility data ketika terjadi masalah atau kegagalan disk.
Jadi RAID merupakan salah satu jawaban masalah kesenjangan kecepatan disk memori dengan CPU dengan cara menggantikan disk berkapasitas besar dengan sejumlah disk – disk berkapasitas kecil dan mendistribusikan data pada disk – disk tersebut sedemikian rupa sehingga nantinya dapat dibaca kembali.

0 komentar:

Posting Komentar

newer post older post Home